Ex 2 Calculs de quantités de matière

- 1. On verse dans un bécher une masse $m=350~{
 m mg}$ de poudre de fer métallique. Quelle est la quantité de matière $n_{
 m Fe}$ correspondante ?
- 2. On dispose d'un flacon contenant $V_0=800~\mathrm{mL}$ de solution de sulfate de cuivre contenant les ions Cu^{2+} à la concentration $C=0,50~\mathrm{mol/L}$. Quelle est la quantité de matière n_0 correspondante?
- 3. On prélève $V=50~\mathrm{mL}$ de cette solution. Quelle est la concentration du prélèvement ? Quelle est la quantité de matière $n_{\mathrm{Cu}^{2+}}$ prélevée ?

Le prélèvement est versé dans le bécher. Une transformation chimique a lieu.

- **4.** A l'issue de cette transformation, on obtient du cuivre métallique en quantité de matière $n_f=4,8~\mathrm{mmol}$. Quelle est la masse correspondante?
- **5.** On obtient également la même quantité de matière n_f d'ions ${\rm Fe}^{2+}$. Quelle est la concentration correspondante?

a	Mc = M	ME = 63.103 md
	NE	

$$G = \int_{\mathbb{R}^{N}} M = 0,50 q$$

Ex 3 Dilution et mélange

On dispose d'une solution de sulfate de cuivre contenant les ions ${\rm Cu^{2+}}$ et les ions sulfate ${\rm SO_4}^{2-}$ à la même concentration $C_0=1.10^{-2}~{\rm mol/L}$. On en prélève à la pipette jaugée un volume $V_0=10~{\rm mL}$ que l'on verse dans une fiole jaugée de volume $V_1=50~{\rm mL}$. On remplit la fiole d'eau distillée jusqu'au trait de jauge.

1. Quelle est concentration C_1 en ions Cu^{2+} et en ions $\mathrm{SO_4}^{2-}$ dans la fiole?

On verse le contenu de cette fiole dans un bécher. On y ajoute un volume $V_2=20~\mathrm{mL}$ d'une solution de sulfate de magnésium, contenant les ions $\mathrm{Mg^{2+}}$ et les ions $\mathrm{SO_4^{2-}}$ à la même concentration $C_2=2.10^{-2}~\mathrm{mol/L}$.

2. Calculer les concentrations des trois ions après mélange.

a Concentration C1

$$C_4 = \frac{GV_0}{V_4}$$

$$\int_{0}^{2+} \int_{0}^{2+} \left[\int_{0}^{2+} \int_{0}^$$

$$y = \begin{bmatrix} n_q^{24} \end{bmatrix} = \frac{C_2 V_2}{V_A + V_2}$$

$$SO_{4}^{2} = \begin{bmatrix} SO_{4}^{2} \end{bmatrix} = \frac{GV_{0} + C_{2}V_{2}}{V_{A} + V_{2}}$$

Ex 4 Concentration en soluté apporté

- 1. Identifier les ions présents dans l'acide sulfurique ${\rm H_2SO_4}.$ Ecrire l'équation de dissolution.
- 2. On ajoute une quantité de matière $n_{\rm app}=2.10^{-2}~{\rm mol}$ en acide sulfurique dans de l'eau distillée. Déterminer les quantités de matière de chaque ion dans la solution formée.
- 3. La solution des questions précédentes a un volume $V=200~\mathrm{mL}$. Calculer la concentration en soluté apporté puis les concentrations des ions dans la solution après dissolution.
- 4. On considère une solution de chlorure de chrome ${\rm CrCl}_3$ de concentration en soluté apporté $c=5.10^{-3}~{\rm mol/L}.$ Déterminer les concentrations des ions dans la solution.
- 5. On dissout $m=6,0~{\rm g}$ de chlorure de magnésium ${\rm MgCl_2}$ dans $200~{\rm mL}$ d'eau distillée. Calculer la concentration en soluté apporté puis les concentrations des ions dans la solution.

_		.
(1) Jo	ins HT el	- so, c

$$H_{\epsilon} SO_{4(a)} \rightarrow \ell H_{(aq)}^{+} + SO_{4(aq)}^{\epsilon}$$

$$\left[\Pi_{q}^{2J} \right] = \frac{m}{\left(\Pi_{n_q} + 2 \Pi_{\alpha} \right) V}$$

Ex 5 Bilan de matière

On étudie la combustion du méthane dont l'équation-bilan s'écrit

$${\rm CH_{4(g)}} + 2{\rm O_{2(g)}} \qquad = \qquad {\rm CO_{2(g)}} + 2H_2O_{(g)}$$

avec pour conditions initiales $n_{\mathrm{CH}_4,i}=4,0 \ \mathrm{mol}$ et $n_{\mathrm{O}_2,i}=6,0 \ \mathrm{mol}$ et aucun produit.

- 1. Construire le tableau d'avancement en distinguant l'état initial (i), un état en cours de réaction, et l'état final (f). On note ξ l'avancement de la réaction.
- 2. Déterminer toutes les quantités de matière à l'instant où $\xi=1,5~\mathrm{mol.}$
- **3.** Identifier le réactif limitant et la valeur de l'avancement maximal ξ_{\max} .
- **4.** On suppose que la réaction est totale : à l'état final, $\xi_f = \xi_{\max}$. En déduire la quantité de matière finale de chacune des espèces.

Ø	CH4 +	20.	= CO ₂	+ 24,0
EI	M _{CN4} :	Mqi		
<u> </u>	Mc4: - \$	Mai - 25	£	25
EF	mon:- St	Mozi - 2 Sf	\$	25
EF	And	0	3 mol	6 md
2 Quantités	de matière :	pom 5 = 1,	5 md	
M (02 =	5 M40 = 6	2 5 M	CN4 = MCN4 -	Moz = Mazi
M(Oz = 1,	5 md MH20 =	3,0 md	M CH4 = 2,5 m	d = 3 md
3 Réadif l	imitant:			
Нур @ = СН	néa dif limba	int = Menji	- \$1, - 0	51, - 4 mol
Нур 💽 : О	, réart limite	nd: Mozi	- 2 \$P ₂ = 0	šl. = 3 md
\$[e < \$[.	0 at	le réactif le	Lat	

Ex 6 Mélanges

Dans un erlenmeyer on ajoute

- $\diamond~V_1=10~\mathrm{mL}$ d'une solution de sulfate de fer (II) $\mathrm{FeSO_4}$ de concentration en soluté apporté $C_1=0,020~\mathrm{mol/L}.$
- $\diamond~V_2=15~\rm mL$ d'une solution de sulfate de fer (III) $\rm Fe_2(SO_4)_3$ de concentration en soluté apporté $C_2=0,200~\rm mol/L$
- $\diamond~V_3=25~\mathrm{mL}$ d'une solution de sulfate de cuivre $\mathrm{CuSO_4}$ de concentration en soluté apporté $C_3=0,10~\mathrm{g/L}.$
- $\diamond~m_i=5,0~{
 m g}$ de poudre de cuivre de masse molaire $M_{
 m Cu}=63,5~{
 m g/mol.}$

Une fois le mélange effectuée, une transformation a lieu, modélisable par la réaction totale d'équation bilan

$$Cu(s) + 2 Fe_{(aq)}^{3+} = Cu_{(aq)}^{2+} + 2 Fe_{(aq)}^{2+}.$$

- 1. Déterminer littéralement et numériquement l'état du système après mélange mais avant toute transformation : concentration des ions et masse de solide.
- 2. Même question une fois la transformation terminée.

(a) Avant réaction:

En solution:
$$Fe : SO_{4} \rightarrow Fe_{(aq)}^{21} + SO_{4}^{2}$$

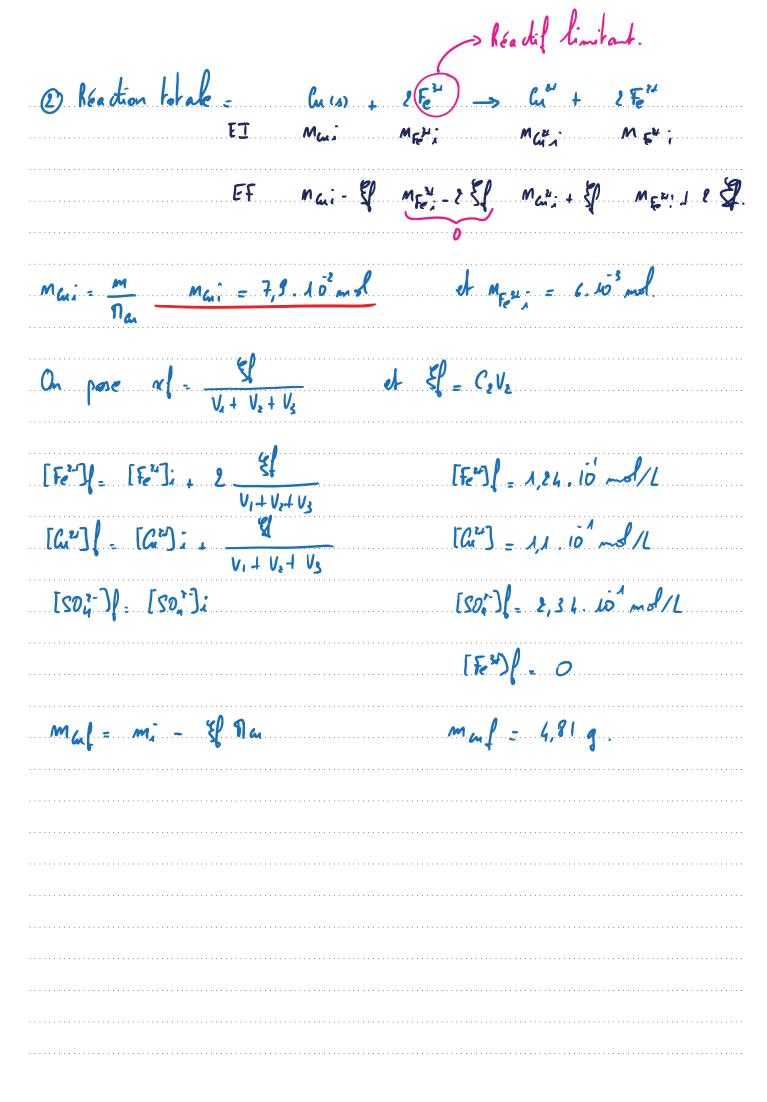
$$Fe_{2} (SO_{4})_{3} \rightarrow 2Fe_{aq}^{31} + 3SO_{4}^{2}$$

$$G_{4} : SO_{4} \rightarrow G_{4}^{21} + SO_{4}^{2}$$

$$[Fe^{2}]_{1} = \frac{C_{4}V_{4}}{V_{4} + V_{2} + V_{3}}$$

$$[Fe^{2}]_{2} = \frac{2C_{2}V_{2}}{V_{4} + V_{2} + V_{3}}$$

$$[G_{4}^{23}]_{2} = \frac{2C_{2}V_{2}}{V_{4} + V_{4} + V_{3}}$$


$$[G_{4}^{23}]_{3} = \frac{C_{3}V_{3}}{V_{4} + V_{4} + V_{3}}$$

$$[G_{5}^{24}]_{4} = \frac{C_{5}V_{4}}{V_{4} + V_{4} + V_{3}}$$

$$[SO_{4}^{27}]_{5} = \frac{C_{5}V_{4} + C_{5}V_{3}}{V_{4} + V_{2} + V_{3}}$$

$$[SO_{4}^{27}]_{5} = \frac{C_{5}V_{4} + C_{5}V_{3}}{V_{4} + V_{2} + V_{3}}$$

$$[SO_{4}^{27}]_{5} = \frac{C_{5}V_{4} + C_{5}V_{3}}{V_{4} + V_{2} + V_{3}}$$

